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BULK VISCOSITY AND THE RELATION 
BETWEEN TRANSPORT COEFFICIENTS 

K. TANKESHWAR* 
International Centre for Theoretical Physics, Trieste, Italy 

(Received 5 May 1991) 

The longitudinal and bulk viscosity of the fluid Argon is calculated using its relation with self diffusion 
coefficient. This relation was derived by developing the relation between coherent and incoherent scattering 
functions. The results obtained are compared with recent simulation data of bulk viscosity. A good 
agreement is achieved for a wide range of temperatures at the triple point density. Our results successfully 
explain the increase in bulk viscosity with decrease in temperature near the triple point. The validity of 
the relation between diffusion and longitudinal viscosity is also tested for liquid metals. The results obtained 
for liquid metals of the longitudinal viscosity, at their melting points, are not found to be in agreement 
with experimental results. A relation between thermal conductivity and self-diffusion coefficient is 
proposed. 

KEY WORDS: Bulk viscosity, diffusion, thermal conductivity, fluid Ar, liquid metals 

1 INTRODUCTION 

In the last three decades extensive computer simulation works for hard sphere, 
Lennard-Jones (LJ) fluids and liquid metals have been done to study the dynamical 
correlations and transport properties. In these studies dynamical structure factors 
and transport coefficients: shear viscosity q l ,  self-diffusion coefficient D, and thermal 
conductivity I ,  have been evaluated. However, there exist, still, very less work 
(theoretical as well as experimental) on the longitudinal viscosity qr (= 4q/3 + qu;  qu 
is bulk viscosity) or bulk viscosity of the fluids. For liquid metals there exists very 
little experimental data on bulk-viscosity. The experimental measurements are 
complicated and can be made only indirectly. No simulation work has been done to 
calculate the bulk viscosity of the liquid metals. On the other hand, for liquid Argon, 
recently, some equilibrium' * 2  and n o n - e q ~ i l i b r i u m ~ ~ ~  molecular dynamics (MD) 
simulations have been made to study the density and temperature dependence of the 
bulk-viscosity. In the simulation studies it has been found that the bulk-viscosity 
increases with decrease in temperature at and near the triple point density which is 
in contrast to the predictions of the existing kinetic theories. The kinetic theories2 
results are at least 60 percent off from the simulation results. In fact, there exist no 
kinetic theory which can readily be used to predict the transport propeties of the 
dense fluids. 

* Permanent Address: Department of Physics, Panjab University, Chandigarh 160014, India. 
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92 K .  TANKESHWAR 

The theoretical approach which is, now, more freqently used for the dense fluids 
is through the Green Kubo formulae. In this approach the transport coefficients are 
expressed as the time integrals of the appropriate time correlation functions. These 
formulae can also be written5 equivalently as the long wave length and small 
frequency limits of the dynamical structure factors (self and collective). For example, 
self diffusion is related to SJk,  o) and qf and i. are related to S(k, w). Since, it is 
simpler to develop models for S,(k, w )  than for S(k, w), attempts have been 
in the past to develop the relations between SJk,  8) and S(k, 0) .  These relations 
ultimately provide a connection between 11, and D. In the present work we use such 
a relation obtained by Hassan and Lado" to calculate the longitudinal viscosity, 
knowing the diffusion coefficients, of the fluid Argon and of liquid metals. Therefore, 
the aim of the present work is two fold: (i) to calculate the longitudinal and bulk 
viscosity of the fluids and (ii) to examine the relation between the transport 
coefficients. 

The calculation of qf and of q,. from the relation between q,  and D requires the 
knowledge of interaction potential and the radial distribution function, g(r).  We have 
used the LJ potential for fluid Argon and the theoretically generated g(r). The results 
obtained for qf and ql. are compared with recent simulation results of Borgelt et ~ 1 . ' .  
A good agreement is achieved at the triple point density for a wide range of 
temperatures. On the other hand, for liquid metals we have simplified the calculations 
and avoided the use of the interaction potential and g(r) .  The final approximate 
expression obtained for q,, valid only at the melting point, for the liquid metal requires 
only the compressibility data as input. We have used experimental results'' for the 
compressibility to calculate q, for liquid Na, K and A1 at their melting point. The 
results obtained have been compared with the experimental data on bulk v is~os i ty '~  
and with earlier theoretical  prediction^'^-'^. We find that our results are of the same 
order as that of the other theoretical predictions. The values of qf obtained are not 
reliable as these are of the order of shear viscosity. Therefore, it may be concluded 
that the relation, used here, between q, and D for calculating q l ,  valid for fluid Argon, 
is not true for liquid metals. This may be due to the fact that the dynamics in fluid 
Argon and in liquid metals are quite different, especially in the small k limits. 

In the present work, we also suggest a relation between thermal conductivity and 
self diffusion coefficient. The relation is obtained by relating the self motion to the 
collective motion dynamics. We find that thermal Conductivity is related to the self 
diffusion through specific heats and the compressibility. The result obtained for 
thermal conductivity from this relation, for fluid Argon at the triple point, is 
remarkably in good agreement with experimental result. We have also applied this 
relation to liquid Na and compared the result with earlier prediction of ionic 
contribution to the thermal conductivity. We find that result is also in good 
agreement. However, it may be pointed out that the relation obtained still requires 
further investigations. 

The layout of the paper is as follows. In Section 2, we have given the available 
relations between S,(k, w )  and S(k, (0). The relation between q,  and D is also given 
there. In Section 3 we have carried out the calculations of the bulk viscosity of the 
fluid Argon and liquid metals. The relation between thermal conductivity and self 
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TRANSPORT IN LIQUIDS 93 

diffusion constant is derived in Section 4. The concluding remarks are given in Section 
5. 

2 GENERALITIES 

The relation between transport coefficients and dynamical structure factors’, through 
the Kubo relations, are given by 

wL 
lirn lim - S,(k, w), 

k2  
D = 

w + O  k - 0  

n2k, T 2  Va2 
= 4 lim lim k2S(k, w), ( 3 )  

A k-+O w - 0  

where n, k,, CI and V are the number density, absolute temperature, Boltzmann 
constant, thermal expansion coefficient and volume of the system, respectively. Noting 
the orders of the limits in Eqs. (2) and (3), it is seen that thermal conductivity is 
related to the elastic scattering law i.e., 

n 2 k , T 2 V a 2  
= lirn k2S(k, 0) (4) 

whereas qr is related to the inelastic scattering law. However, from Eqs. ( 2 )  and 
(3) one intuitively expects that there may exist a well defined relation between thermal 
conductivity and the longitudinal viscosity. However, in our knowledge, there exist 
no  work which relates thermal conductivity to the longitudinal viscosity through the 
relations ( 2 )  and ( 3 ) .  On the other hand, relation between viscosity and self-diffusion 
coefficients, through Eqs. (1) and (2) ,  and between thermal conductivity and diffusion 
constant, through Eqs. (1) and ( 3 ) ,  can be obtained by developing the relation between 
SJk, w )  and S(k, w). Experimentally, these two functions can be measured separately 
by means of incoherent and coherent inelastic neutron scattering. Since, theoretically, 
the models now exist that can describe S,(k, w) more accurately than the S(k, w), the 
relation between these self and collective motion functions have been developed. The 
simplest connection between S,(k, o) and S(k, w), known as convolution approxima- 
tion, is given by 

S(k, w )  = S(k)S,(k, w). ( 5 )  

where S(k) is the static structure factor. Eq. (5) preserve only the zeroth sum rule 
of the S(k, w). The systematic derivation of such relations has been done using 
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94 K. TANKESHWAR 

Mori-memory function forrnalism7~* and the perturbation technique”. This provides 
a hierarchy of approximations relating S(k, w)  to S,(k, w). The first member of the 
hierarchy is Eq. (5) and the next two approximations are given as 

where 

6 li2k,T 
- mS(k) 

2k’kB T 
m 

6” 2 -  + w; 

A(k, O)  = d16; + (6, - &)w2 

B(k, W )  = (i:6, - A(k, o) 

with 

and 

cuf = 3k2kBT/rnS(k) + (n /m)  drg(r)(l - cos(k.r)(K.V)’U(r). 5 
In the above equations U,, = d*U(r)/dr; i.e., second derivative of the pair potential 
U(r), with respect to the x Cartesian component. The G#, w )  and G;(k, w)  are the 
real and imaginary parts of the space-time transform of the Von-Hove self correlation 
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TRANSPORT IN LIQUIDS 95 

function. The real part G#, o) is of course nS,(k, o)/n. The last approximation 
(7) has been called the liquid extended phonon model. This model has been tested 
against the simulation results of dense gas and a good agreement15 is achieved. The 
approximations ( 5 )  and (6) do not provide a relation between qr and D, through Eqs. 
(1) and (2) ,  whereas Eq. (7) gives" 

where 

1 0  

1,  
a, = - 

with 

in 

k ,  Tn I ,  = __ w; 

and 

drg(r)x2Uxx.  
1 = 3 - - + -  

S(0) 2 k B T  

(9) 

The relation (8) differs from the prediction of many theories which relate the self 
diffusion constant to the shear viscosity aloneI6. However relation (8) is supported 
by some theories like that of Hubbard and Beeby" and by the recent approximate 
result of Zwanzig'* which relates the diffusion constant to the shear viscosity through 
the longitudinal viscosity. 

In the next section we test the validity of the relation (8) and also use it to predict 
the bulk viscosity of the fluid Argon and of the liquid metals at their melting 
points. 

3 CALCULATION AND RESULTS 

The calculations of the longitudinal viscosity from Eqs. (8) require the knowledge of 
the self diffusion constant and of the integrals Z, and I , .  The integrals Z, and I ,  can 
be obtained knowing the interatomic potential and radial distribution function. The 
detailed calculations for fluid Argon and liquid metals are separately given below. 
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96 K. TANKESHWAR 

3a Fluid Argon 

The integrals appearing in Eqs. (10) and (11) are evaluated using the LJ potential 
and the theoretically generated” g(r). This g(r )  has been found to be in good 
agreement with the simulation data”. For S(0) we have used the recent theoretical 
results of Lomba”. The results obtained for I,, I, and a, are given in Table 1. From 
the table it can be seen that a ,  remains almost constant with increase in temperature. 
With a ,  to be constant and if one assumes that qJyI does not vary with temperature, 
we obtain a relation of Stokes-Einstein form, i.e., 

where C is a numerical constant. However, in practice qv/q is not a constant and in 
the present case, it varies from 0.44 to 0.30 for the temperatures ranging from 85 K 
to 273 K for fluid Argon at the triple point density. Therefore, C will be a variable 
depending on the ratio qJq, as has, recently, been investigated by Zwanzigt8. 

The results obtained for q ,  from Eq. (8) using the simulation values of the self 
diffusion constant and the values of a,  from Table 1, are also given in Table 1. The 
values of the self diffusion coefficients were smoothened before use, as also done by 
Borgelt et uf’. The simulation results of qt( = 4/3q + q , )  of Borgeft et al. are aIso given 
in Table I for comparison. From Table 1 it can be seen that a good agreement is 
achieved for the whole temperature range investigated here. Since the values of the 
bulk viscosity are sensitive to the knowledge of shear viscosity, the values of the shear 
viscosity were also smoothened before subtracting it from qI  for calculating q”. The 
results obtained are compared with simulation results for the bulk viscosity of Borgelt 
el al. in Table 1. From Table 1, we find that Eq. (8) predicts the q1 and qc in agreement 

Table 1 
MD results are from Ref. 2. 

Value of I , ,  I , ,  a, and viscosities (Pa. sec) for fluid Argon at a density of 1.414 g . ~ r n - ~ .  The 

~ ~~ ~- ~~ ~~ ~~~~ 

T I” 1,  “0 ‘ I  I ‘ I 1  4,. ‘1, 
C K )  cm) (10-8 ern) i colc ) ( M D )  fctrlc) ( M D l  

91.2 1435.6 88.7 16.18 4.34 4.44 0.95 1.06 
98.2 1389.0 85.7 16.20 4.14 3.9 0.83 0.81 

100.5 1374.0 84.7 16.22 4.15 4.39 0.9 I 0.8 1 
102.1 1364.6 84.1 16.23 4.12 4.02 0.90 0.84 
119.4 1272.4 78.1 16.29 3.88 4.02 0.77 0.77 
122.5 1258.0 77.3 16.27 3.84 3.94 0.77 0.8 1 
140.4 1185.0 12.6 16.32 3.68 3.53 0.74 0.56 
156.4 1 1  30.7 69.2 16.34 3.69 3.63 0.78 0.75 
178.7 1067.1 65.4 16.32 3.48 3.67 0.68 0.66 
203.3 1009.9 61.8 16.24 3.39 3.4 I 0.63 0.65 
224.7 967.8 59.3 16.22 3.35 3.28 0.64 0.58 
246.1 93 1.23 57.2 1628 3.32 3.27 0.67 0.62 
265.7 901.9 55.5 16.25 3.29 3.47 0.69 0.71 
287.3 872.8 53.9 16.19 3.10 3.13 0.55 0.58 
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TRANSPORT IN LIQUIDS 91 

with the simulation results. We also find that calculated q, decreases with increase 
in temperature, as expected for dense gas or liquid, in agreement with the simulation 
results. However, for dilute gases one expects that v and qv should increase with 
increase in temperature. Therefore, it is of interest, here, to see the dilute gas limit 
of Eq. (8). In n 0 limit, one finds that 

a, = const. 

and 
D + J T  

Substituting these in Eq. ($), we find that 

v , - J T  
as predicted by the kinetic theory. From the above results and the good agreement 
with the simulation results at the triple point density, we expect that the relation (8) 
is valid for the fluids of the Lennard Jones type for a wide range of densities and 
temperatures. In order to see the validity of the Eq. (8) for liquid metals in which the 
details of self and collective motions are quite different from that of the fluid Argon, 
we have made calculations for liquid Na and K for which experimental results of 
bulk viscosity are available. The results are presented below. 

3b Liquid Metals 

It is of interest to calculate the bulk and longitudinal viscosity of the liquid metals 
from Eq. (8), having found good results for the fluid Argon. For liquid metals we 
have simplified the calculations and avoided the use of the interatomic potential and 
radial distribution function. In order to calculate a,, we essentially require 0: and 
a;. The w: can be approximately written in terms of a; as 

which for k + 0, provides 

3 
k-0 10 
lim w?(k) = - w;o2. (131 

Here it may be noted that the approximation (12) has been tested against the 
exact results for liquid metals and provide good for all values of k. 
Equation (13) has also been tested for present calculation on fluid Argon and results 
obtained are not found to differ by more than 2 percent. Substituting Eq. (13) in Eq. 

P.C.L.. D 
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98 K. TANKESHWAR 

(11)  and using Eq. (9) and (lo), we obtain 

This expression is valid for all the densities and temperatures. However, at the 
melting point the Einstein frequency is not very different from the Debye frequency. 
For example the wD is 5.6 x l O I 3  sec-' and wE ~a lcu la t ed '~  using Shiff potential 
for liquid aluminium is 5.16 x Therefore, replacing wE by o,, in Eq. (14) and 
substituting in Eq. (8), we obtain 

This formula for longitudinal viscosity, at the melting point, appears to be new. 
The subscript m in Eq. (15) denotes the various quantities at the melting point. The 
expression (15) is to be compared with that obtained by Brown and March" which 
is given by 

Equations (15) and (16) both relates the ql to S(0) and wD.  However, in Eq. (16) 
the S(0) dependence appears as a result of the approximation which relates the zeroth 
sum rule of the stress auto-correlation function to S(0). On the other hand S(0) 
dependence in Eq. (1 5) appears as a result of the relation between S,(k, w)  and S(k, 0). 

In order to obtain q f  from Eq. (15) we now require only CT,, D, and S(0). For a, 
we have used 

where v, is the packing fraction taken to be 0.472. For S(0) we use the experimental 
isothermal compressibility ( K T )  data and the results of density fluctuation theory 

The longitudinal viscosity calculated from Eqs. (15) and (16) using experimental 
results of D, for metals Na, K and A1 are given in Table 2. The results obtained for 
liquid Na and A1 of longitudinal viscosity by Bansa1'3.'4 are also given for compar- 
ison. It is found that the theoretical results obtained from Eqs. (15), (16) and by 
Bansal are of the same order for the metals investigated here. It can be seen from 
the table that the values of the qr are not reliable for liquid Na and K as these are of 
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Table 2 The values of the viscosities (in lo-’ Poise) for liquid metals at their melting 
points. 

11 ‘11  ? I  1 1” 
Eqn. (IS) Eqn. (16) (Ref: 13, 14) (Exp1.I 

Na 6.91 6.29 4.01 6.9 16.5 
K 4.80 5.87 5.4 13.1 
A1 24.85 20.96 27.52 11.0 __ 

~ 

Experimental values of q. are taken from Kim et al. (1971) 

the order of the shear viscosity. On the other hand, result obtained for liquid A1 is 
reasonable and it provides the ratio q,/q = 0.92. Overall, we find that the relation 
(8), valid for fluid argon does not provide acceptable results for the liquid metals. 
This may be due to the fact that the dynamics in liquid metals are quite different 
from that in fluid Argon, particularly in small k region. 

4 

The relation between thermal conductivity and self diffusion constant can be obtained 
using Eqs. (4) and (1) and exploiting the relations of Ss(k,w) and S(k,w) given by 
Eqs. (5t(7). We find that Eqs. (5) and (6) provide a relation between ;i and D, whereas 
Eq. (7) does not. The Eq. (6), satisfying the second sum rule of the S(k, w) in o tending 
to zero limit gives 

RELATION BETWEEN 1, AND D 

In the hydrodynamic limit S,(k, o) is governed by the diffusion equation and one 
finds 

1 Dk2  
7c o2 + (Dk’)’‘ 

S,(k, O) = - 

Substituting Eq. (20 )  in Eq. (19) and the result in Eq. (4), we obtain 

Using a’ = K,(C, - CJTY and Eq. (18),  we obtain 

The above relation, relating thermal conductivity to diffusion constant, appears to 
be new. 
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100 K. TANKESHW 

In order to check the validity of Eq. (22), we have calculated thermal conductivity 
of fluid Argon at its triple point using the value of C,, C,, S(0) and D given by 
EgelstaffZ3. We find that our result for thermal conductivity is 2.85 x in 
comparison to the experimental result 2.9 x (in units of cal sec-' K- '  ). This 
agreement is remarkably good. However, for liquid metals it is known that heat 
conduction takes place due to electron and ion transport. The electronic contribu- 
tion i., to i. has been found to be dominant and deviation from il is quantitatively 
very small. However, if we calculate ,lion from Eq. (22) for liquid Na at its melting 
point we find that it is 0.00026 in comparison to value 0.00021 (in same units as 
above) calculated theoretically by Kitajima24 given in the book by Shimoji. From 
above results we find that Eq. (22) is reasonably a good approximation. However, it 
still requires further investigations. 

5 CONCLUDING REMARKS 

In this paper we have used the relation between longitudinal viscosity and the 
self-diffusion coefficient to predict the bulk viscosity of the fluid Argon and liquid 
metals. We find that the relation (8) successfully predicts the bulk viscosity of fluid 
Argon in agreement with the simulation results. However, for liquid metals the 
relation (8) is found to be invalid. This may be attributed to the difference in the 
dynamics of the fluid Argon and liquid metals. 

We have also suggested the relation between thermal conductivity and self diffusion 
constant through the relation between SJk, w )  and S(k, 0). Therman conductivity 
obtained from the relation (22) for liquid Argon and liquid Na at their melting points 
are found to be very good. 

In conclusion we find that relation (8) and (22) can be used to predict the viscosity 
and thermal conductivity of the fluids of the LJ types. Recalling that the sixth sum 
rule of S(k, w )  was used25,26 in predicting the collective density excitations in liquid 
metals, we expect that the next approximation relating dynamical structure factors 
which satisfy the sixth sum rule may provide good results for the bulk viscosity of 
the liquid metals. Here it may be mentioned that theory for the bulk viscosity, similar 
to the other transport coefficients*', can be developed which does not require the 
knowledge of the shear viscosity. The work is in progress28 and will be applied to 
the liquid Argon and liquid metals. 
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